The National Trends Network Database:

Data Validation Coding & the Use of Site History at the Central Analytical Laboratory

Validation Codes

Used primarily to identify samples that have been compromised

Types:

1) Sampling Protocol Codes (SP codes) - Reflect precipitation collector malfunctions

Validation Codes

Used primarily to identify samples that have been compromised

Types:

- 1) Sampling Protocol Codes (SP codes) - Reflect precipitation collector malfunctions
- 2) Screening Level Codes (SL Codes) - Reflect gross contamination based on operator/lab remarks & site history

Sampling Protocol Codes (SP Codes)

"U" Wet-side bucket exposed to > 6 hours of dry deposition over the duration of the sampling period (3.9% in 2004)

Sampling Protocol Codes (SP Codes)

- "**U**" Wet-side bucket exposed to > 6 hours of dry deposition over the duration of the sampling period (3.9% in 2004)
- "B" Wet-side bucket exposed to *all* deposition over the entire sampling period (0.9% in 2004)

Sampling Protocol Codes (SP Codes)"U"Wet-side bucket exposed to > 6 hours of dry
deposition over the duration of the sampling
period (3.9% in 2004)"B"Wet-side bucket exposed to all deposition
over the entire sampling period
(0.9% in 2004)BlankWet-side bucket exposed to < 6 hours
of dry deposition over the duration of
the sampling period (95.2% in 2004)

Sampling Protocol Codes (SP Codes)

"U"	Wet-side bucket exposed to > 6 hours of dry deposition over the duration of the sampling period (3.9% in 2004)
"В"	Wet-side bucket exposed to <i>all</i> deposition over the entire sampling period (0.9% in 2004)
Blank	Wet-side bucket exposed to < 6 hours of dry deposition over the duration of the sampling period (95.2% in 2004)
"Q"	Quality assurance sample

Screening Level Codes (SL Codes)

"F" Gross mishandling in the field (0.3% in 2004)

Screening Level Codes (SL Codes)

"F"	Gross mishandling in the field
	(0.3% in 2004)

"L" Gross mishandling in the lab (0.0% in 2004)

Screening Level Codes (SL Codes)

"F"	Gross mishandling in the field (0.3% in 2004)
"L"	Gross mishandling in the lab (0.0% in 2004)
"C"	<u>Contaminated</u> sample that exhibits anomalous chemistry compared to Site History distributions (8.1% in 2004)

Screening Level Codes (SL Codes)"F"Gross mishandling in the field
(0.3% in 2004)"L"Gross mishandling in the lab
(0.0% in 2004)"C"Contaminated sample that exhibits
anomalous chemistry compared to
Site History distributions
(8.1% in 2004)

(91.6% in 2004)

Blank

NTN Site History

 Includes, for each site from start-up to present, all Wet-type (>35ml) samples with Blank SP & SL codes

NTN Site History

- Includes, for each site from start-up to present, all Wet-type (>35ml) samples with Blank SP & SL codes
- Calculates descriptive statistics for these samples including percentile distributions for all analytes

NTN Site History

- Includes, for each site from start-up to present, all Wet-type (>35ml) samples with Blank SP & SL codes
- Calculates descriptive statistics for these samples including percentile distributions for all analytes
- Updated quarterly

VALCHK - Site History and SL Coding

• All analyte values from incoming *contaminated* samples are compared against a site's history to determine if outliers exist

VALCHK - Site History and SL Coding

- All analyte values from incoming *contaminated* samples are compared against a site's history to determine if outliers exist
- Each analyte value is automatically assigned a score based on its position within the sites historical distribution of values for that analyte

VALCHK - Site History and SL Coding

- All analyte values from incoming *contaminated* samples are compared against a site's history to determine if outliers exist
- Each analyte value is automatically assigned a score based on its position within the sites historical distribution of values for that analyte
- An SL code of "C" is assigned if the sum of scores is > or = 4.0

VALCHK Scoring

Concentration vs. Site History	pH & Conductance	Other Analytes
> Maximum	1	2
≥ 90 th	0.5	1
≤ 10 th	0.5	0
< Minimum	1	0

Hypothetical VALCHK Scoring Scenarios									
		Samp	le						
	A	В	С	D					
pН	0.5			1					
Cond.			1						
Ca	1								
Mg			1						
ĸ		2							
Na	~			1					
NH ₄	2			1					
NO ₃				1					
		2							
30 ₄		2	2						
F 0 ₄			2						
Sum	3.5	4.0	4.0	5.0					
SL Code	blank	С	С	С					

Concerns with the Use of Site History in SL Coding

 Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?

Concerns with the Use of Site History in SL Coding

- Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?
- Analyte distributions for new sites have small sample sizes with potentially narrow distributions.
 Do young, narrowly distributed site histories affect SL coding?

Concerns with the Use of Site History in SL Coding

- Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?
- Analyte distributions for new sites have small sample sizes with potentially narrow distributions.
 Do young, narrowly distributed site histories affect SL coding?
- Sites start-up in different seasons. In the spring samples may contain more contaminants.
 Does start-up season affect SL coding?

Concerns with the Use of Site History in SL Coding

- Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?
- Analyte distributions for new sites have small sample sizes with potentially narrow distributions.
 Do young, narrowly distributed site histories affect SL coding?
- Sites start-up in different seasons. In the spring samples may contain more contaminants.
 Does start-up season affect SL coding?

The Maximum Problem

Maxima are unidirectional

The Maximum Problem

Maxima are unidirectional

 Older sites have maxima that are often decades old, yet still serve as bench marks in scoring outliers

The Maximum Problem

Maxima are unidirectional

- Older sites have maxima that are often decades old, yet still serve as bench marks in scoring outliers
- Contaminated samples that are non-representative of site precipitation chemistry may not be flagged as such because analyte concentrations that are otherwise anomalous fail to achieve new maxima

The Maximum Solution?

The Maximum Solution?

• Floating Site Histories

The Maximum Solution?

- Floating Site Histories
- Site histories based on "recent" data

The Maximum Solution?

- Floating Site Histories
- Site histories based on "recent" data
- But, "dry" sites may be at a disadvantage since site history sample size may be far smaller than that of a "wet" site

The Maximum Solution?

- Floating Site Histories
- Site histories based on "recent" data
- But, "dry" sites may be at a disadvantage since site history sample size may be far smaller than that of a "wet" site
- Site histories based on last x number of samples may alleviate this problem

The Maximum Solution?

- Floating Site Histories
- Site histories based on "recent" data
- But, "dry" sites may be at a disadvantage since site history sample size may be far smaller than that of a "wet" site
- Site histories based on last x number of samples may alleviate this problem

• Or...

The Maximum Solution? (continued)

The 99th percentile

The Maximum Solution? (continued)

• The 99th percentile could replace the maximum as a new bench mark for scoring outliers

The Maximum Solution? (continued)

- The 99th percentile could replace the maximum as a new bench mark for scoring outliers
- The 99th percentile is bidirectional and will track average trends

Concerns with the Use of Site History in SL Coding

- Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?
- Analyte distributions for new sites have small sample sizes with potentially narrow distributions.
 Do young, narrowly distributed site histories affect SL coding?
- Sites start-up in different seasons. In the spring samples may contain more contaminants. Does start-up season affect SL coding?

Concerns with the Use of Site History in SL Coding

- Many sites have histories > 25 years old.
 Do ever-expanding analyte distributions affect SL coding?
- Analyte distributions for new sites have small sample sizes with potentially narrow distributions.
 Do young, narrowly distributed site histories affect SL coding?
- Sites start-up in different seasons. In the spring samples may contain more contaminants. Does start-up season affect SL coding?

Five steps for every species for every site Inspect Time Series plots Inspect Concentration/Precipitation/Deposition plots Inspect Superimposed Time Series plots For the outliers on the plots, evaluate other species concentrations, ion balance values and field and lab comments Apply appropriate valid or invalid flag Environment Environment Environment

Summary of Method

- Outliers are identified through inspection of the three types of plots
- Once identified, an outlier value is assessed with respect to its position on the Concentration-Precipitation-Deposition plot, the seasonality of the ion, the other ions, the ion balance, and lab/field comments
- A datum is flagged as invalid <u>only</u> if there is clear evidence of contamination or sampling problems

Meteorological Service of Canada Service Météorologique du Canada