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Long-term monitoring of ambient air quality and deposi-
tion is necessary to characterize trends in human and ecosys-
tem exposure and to gauge the effectiveness of air pollution
control programs. Such datasets are rare because of the 
difficulty and capital required to consistently and accurately
collect and analyze samples over time from a spatially ade-
quate number of regionally representative sites. Most of the
national air pollutant monitoring networks producing these
datasets were established in the 1970s and 1980s and fo-
cused on the human health-based U.S. National Ambient 
Air Quality Standards (NAAQS) criteria pollutants (e.g., sulfur
dioxide [SO2], nitrogen dioxide [NO2], ozone [O3], and 
particulate matter < 2.5 µm [PM2.5]) or reporting acid rain
trends and visibility impairment.

Under Title IV of the U.S. Clean Air Act Amendments
(CAAA), electric generating units (EGU) were required to
make significant reductions in emissions of SO2 and oxides
of nitrogen (NOx; i.e., nitric oxide [NO] and nitrogen dioxide
[NO2]). While NOx has continued to be regulated under sta-
tionary and mobile emissions programs (e.g., NOx Budget
Trading Program), reduced nitrogen (NHx; i.e., particulate
ammonium [pNH4] plus gaseous ammonia [NH3]) remains
unregulated despite its contributions to PM2.5 formation and
total reactive nitrogen (Nr) deposition. Several long-term
monitoring networks have measured components of Nr
species for several decades (see Table 1). 

While monitoring data are used to assess regional long-term
trends in air concentrations1 and wet deposition of some Nr
species,2 the NADP Total Deposition (TDep) measurement-
model fusion method3 is widely used for assessing trends in
total (wet + dry) Nr deposition in the United States. Briefly,
the TDep method combines measured concentrations and
wet deposition with modeled values where measurements
are lacking (spatial gaps or unmeasured species).

In this article, we use measurements, TDep products, and
emission inventories to discuss current trends in atmospheric

concentrations and deposition of Nr and their relationship to
trends in emissions. This analysis identifies several examples
where improvements in monitoring, modeling, and emissions 
inventories are needed to better characterize the linkages be-
tween trends in emissions and changes in the atmospheric
composition of Nr.

Current Monitoring Trends in Emissions,
Ambient Concentrations, and Deposition
Annual emissions of SO2 and NOx have decreased substan-
tially (by 83% and 57%, respectively) from the period from
1990–1992 to 2014–2016 (see Figure 1). This is attributa-
ble to EGU controls (i.e., EGU emission reductions of 85%
for SO2 and 77% for NOx),4 market-driven changes to
cleaner fuels, and mobile source controls (i.e., mobile source
reductions of 89% for SO2 and 46% in NOx).4

This decline is reflected in the long-term monitoring of ambi-
ent concentrations over the same period. The decreasing
SO2 concentration trend measured at eastern CASTNET sites
(86%; see Figure 2 and summarized in Table 2) shows a 
linear relationship between EGU emissions and ambient 
concentrations (R2= 99%).5 Data that support linkages 
between emissions and environmental results provide 
accountability for regulators and the regulated community.

Deriving this type of relationship between emissions and con-
centrations is more convoluted for Nr species. Atmospheric
processing converts the NOx emitted by sources (reported
by emissions monitors) to a diverse number of oxidized N
compounds (NOy), which monitoring networks either meas-
ure as total NOy (by chemical conversion of all NOy com-
pounds to NO prior to detection) or as a fraction of NOy
(e.g., filter-based methods report out on total nitrate [the sum
of nitric acid (HNO3) and particulate nitrate (pNO3]). Also,
NOx emissions are more distributed across source types
(e.g., 26% EGUs, 52% transportation, 22% other in 1990)4

(Figure 1). Large decreases in NOx emissions during the 
period from 1990–1992 to 2014–2016 are reflected in a
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marked decrease in ambient concentrations of total nitrate
(48%) at CASTNET eastern reference sites (Figure 2), and in
NO2 satellite observations.6

For NHx species, emission sources emit NH3, which in the 

atmosphere can readily convert to pNH4 or remain as NH3

depending on meteorological conditions and availability of
acidic pollutants as precursors to pNH4. Monitoring networks
need to measure both forms to accurately represent NHx.
CASTNET ambient pNH4 concentrations show a similar 
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Network                      Nr Measurements                 Measurement   Website
                                                                                Interval

Clean Air Status           Ambient concentrations of      Weekly              https://epa.gov/castnet
and Trends Network     pNH4

+, particulate nitrate
(CASTNET)                  (pNO3

-), nitric acid (HNO3)                             

National Atmospheric    Concentrations of NO3- and   Weekly              http://nadp.slh.wisc.edu/NTN/
Deposition Program      NH4

+ in precipitation; 
(NADP) National          precipitation amounts
Trends Network (NTN)

NADP’s Atmospheric     Concentrations of NO3
-          Daily                 http://nadp.slh.wisc.edu/

Integrated Research      and NH4
+ in precipitation;      (event-based)      AIRMoN/

Monitoring Network     precipitation amounts
(AIRMoN)

NADP’s Ammonia        Ambient concentrations          Bi-weekly           http://nadp.slh.wisc.edu/AMoN/
Monitoring Network     of NH3
(AMoN)

Chemical Speciation      Ambient concentrations         Daily                 https://www3.epa.gov/ttn/amtic/
Network (CSN)             of pNO3

-, pNH4
+                   (1:3 or              speciepg.html

                                                                             1:6 day)

Interagency Monitoring Ambient concentrations         Daily                 http://vista.cira.coloradostate.edu/
of Protected Visual        of pNO3

-, particulate nitrite     (1:3 day)            improve
Environments               (pNO2

-)
(IMPROVE)

National Core (NCore)  Concentrations of NO,           Hourly               https://www3.epa.gov/ttn/amtic/
Multipollutant Network;  total oxidized nitrogen                                   ncore; https://www3.epa.gov/
State and Local Air       (NOy); PM speciation                                     airquality/montring.html
Monitoring Stations      (CSN or IMPROVE)
(SLAMS); National 
Air Monitoring 
Stations (NAMS)

Photochemical              Concentrations of NO,           Hourly               https://www3.epa.gov/ttn/amtic/
Assessment                  NOy, NOx                                                    pamsmain.html
Monitoring 

Stations (PAMS)

Near-road NO2            Concentrations of NO2              Hourly               https://www3.epa.gov/
Monitoring                                                                                      ttnamti1/nearroad.html

Table 1. Existing U.S. monitoring networks that measure components of reactive nitrogen (Nr) in the 
atmosphere or precipitation (wet deposition). Data from these networks are used by state, local, and 
federal agencies; researchers; and industries to assess trends in atmospheric pollution and deposition.



decreasing trend (63%) as those reported for SO2 and total
nitrate (Figure 2), yet NH2 emissions have decreased at a
much slower rate (-19%) since 1990–1992.4 Measured an-
nual ambient NH3 concentrations at 21 NADP/AMoN sites
with long-term sampling records increased 24% from 2008–
2010 to 2014–2016 (see Figure 3). An increasing NH2 trend
(7 ± 2%) was also identified in a study on similar sites that
accounted for variability in seasonality and regional location.8

Trends in total (wet + dry) deposition in the United States
were derived from TDep results and should be reflective of
those for emissions and ambient concentrations. Total Sulfur

(S) deposition decreased by 58% from 2000–2002 to
2014–2016 and total NOy deposition decreased by 35%
over the same period, showing significant but less dramatic
trends than measured concentrations (see Figure 4; summa-
rized in Table 2). However, total NHx, deposition increased
by 30% over the same time period, and comprised a 
decrease in dry pNH4 deposition (-17%) and increases in wet
NH4

+ deposition (+24%) and dry NH3 deposition (+54%),
which contribute 2%, 30%, and 18% to the total Nr budget, 
respectively (Figure 4).

Ambient NH3 can be entrained in precipitation, thus higher
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Figure 1. Three-year averaged annual emissions trends for SO2, NOx, and NH3 by source category.4
Note: Source categories are grouped as regulated EGUs, transportation, and other, which includes everything from fuel combustion 
from non-EGU sources, industrial processes, and agricultural sources to events such as wildfires and prescribed burns. The percent 
decrease in overall emissions is noted above the 2014-16 bars.

Species                  Time Period                    Emissions          Concentrations         Total Deposition

SO2               1990–92 to 2014–16                  -83                        -86                             -
                     2000–02 to 2014–16                  -76                        -80                           -58◊

NOy              1990–92 to 2014–16                 -53ζ                       -48¥                             -
                     2000–02 to 2014–16                 -48ζ                       -48¥                           -35

NHx               1990–92 to 2014–16                 -19†                       -63‡                             -
                     2000–02 to 2014–16                 -15†                       -58‡                            30
                     2008–10 to 2014–16                 -17†             -39‡; 24†; 7 ± 2†δ                  19

Table 2. Summary of percent differences for oxidized sulfur, oxidized nitrogen, and reduced nitrogen in 
emissions, concentrations, and total deposition over different time periods of comparison. All percent differences
are obtained from three-year averages at the beginning and end of the time period as indicated.

Notes:
◊- reported as total S; ζ - reported as NOx; ¥ - reported as total nitrate; 
† - reported as NH3; ‡ - reported as pNH4

+; δ – Ref.: Butler et al., 2016
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NH3 concentrations likely explain the observed increases in
wet NH4

+ deposition. The decreasing pNH4 concentrations
and the increasing NH3 concentrations suggest that less of
the NH3 emissions are partitioning to the particle phase. This
is supported by the concurrent decline in SO2 and NOy
emissions and concentrations, which reduces the potential for
acidic pollutants to react with gaseous NH3 and convert to
PM.8 Summing the concentration averages for pNH4 and
NH3 over the period from 2008–2010 to 2014–2016 and
calculating the difference provides a rough estimate of the

NHx concentration trend (-4%),
which is more proximate 
to the National Emissions Inven-
tory (NEI) NH3 emissions trend
of -17% over this period, though
still a substantial difference.

The TDep NOy total deposition
maps from 2000–2002 to
2014–2016 show that the re-
ductions in NOy deposition have
been significant downwind of
large EGU sources in the Eastern
United States (see Figure 5).
Urban areas are now easily 
identified as the major NOy
hotspots. The total NHx deposi-
tion map shows increases in
agricultural source regions (e.g.,
Midwest United States, eastern
NC, southeastern PA) (Figure 5).
The total Nr deposition pre-
dicted by the TDep method is
now approximately half NOy
and half NHx (Figure 4). This
trend has also been observed in
other studies.2,10

Trends Analysis 
Limitations
The trends analyses in Nr emis-
sions, concentrations, and 
deposition described in the pre-
vious section are not without
limitations. Linking trends in
emissions and atmospheric 
concentrations for Nr species is
not as straightforward as for S,
as there are more Nr species,
more reactivity, and more
sources to convolute these link-
ages. Emissions inventories for
non-EGU sources are not robust
and improvements are needed

for all Nr species. These sources have greater uncertainties,
as they are more variable with time (e.g., agricultural and bio-
genic sources), are episodic (e.g., wildfires), and are typically
calculated via mass-balance techniques.11 Studies suggest
current inventories for mobile emissions are overestimated for
NOx12-14 and underestimated for NH3.15,16 Agricultural
sources (e.g., livestock production, emissions from fertilized
soils) account for 80% of U.S. NH3 emissions4,17,18 and are
poorly characterized by agricultural practice and activity data
in emissions inventory development.19

Figure 2. Trends in annual aggregate mean SO2 (top), total nitrate 
(middle), and pNH4 (bottom) concentrations from CASTNET eastern 
reference sites.7
Note: The CASTNET reference sites are split into eastern and western regions due 
to the spatial density of the measurement sites, concentration differences, a difference
in filterpack collection flow rate, and different start dates of operation. Only eastern 
sites are discussed as they are in closer proximity to EGUs and more reflective of 
the trends.
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There are substantial limitations to the available Nr concentra-
tion measurements and how those measurements are used to
assess total deposition. The TDep methodology does not uti-
lize measured NH3 concentrations because of a non-linear

relationship with the modeled 
bi-directional deposition 
velocities. Also, existing network
measurements for NO2 (e.g., U.S.
AQS), are also not currently uti-
lized. Planned newer versions of
the TDep method will address
these limitations in the near fu-
ture. Approximately 13% of the
total Nr deposition budget is ei-
ther not measured or not utilized
by the TDep method (Figure 4). A
fraction of this is organic nitrogen
(ON), which is uncharacterized. 

More Research Needed
Routine Nr monitoring could be
expanded to include bulk sam-
pling of ON in precipitation and
PM to develop more complete Nr
budgets. Additionally, low-cost
passive samplers for NH3 and
NO2 could be added to existing
networks to help characterize gra-
dients from urban and agricultural
areas to rural, non-source im-
pacted areas. This could be con-
ducted in tandem with satellite
assessments to identify new moni-
toring locations and to better un-
derstand measurement spatial
representativeness. Further devel-
opment of low-cost methods for
directly measuring dry deposition,
suitable for routine network oper-
ation, is also a high priority. Finally,
there are constant improvements
in the accuracy of chemical trans-
port models (CTMs) used to de-
velop long-term time series of
concentrations and deposition.
These new estimates need to be
reconciled with older estimates,
especially for trends assessment
where consistency is essential. 

Satellite measurements of 
tropospheric NO2 and NH3 con-
centrations can augment current
monitoring and modeling strate-

gies for Nr and address some of these limitations. Satellite
data products have been used to quantify regional and point-
source scale emissions,20,21 including episodic emissions (e.g.,
wildfires)22,23 to improve emissions inventories.24,25 Also,
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Figure 3. Trend in annual aggregate mean NH3 concentrations from 
21 NADP/AMoN sites.

Figure 4. Trends in Nr deposition output by the TDep measurement-model
fusion method.
Note: Top plot is the deposition flux of total Nr and its oxidized and reduced 
components (kg-N ha-1). The lower plot is the percentage of total Nr deposition for
each modeled species and its deposition pathway. 
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Figure 5. TDep method deposition maps of NOy and NHx from 2000–2002 to 2014–2016.9

satellite-derived long-term trends for concentrations of
NO2

26,27 and NH3
28-30 support surface monitoring trend data

and provide information on spatial variability31 not achievable
with surface networks. Satellite data products have been used

in conjunction with measurements, CTMs, and deposition
models to estimate trends in Nr deposition32,33 or to evaluate
and improve the CTMs28,34-36 and thus improving modeled
deposition estimates providing more accurate trends. em
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